Efficiently Decodable Error-Correcting List Disjunct Matrices and Applications - (Extended Abstract)
نویسندگان
چکیده
A (d, )-list disjunct matrix is a non-adaptive group testing primitive which, given a set of items with at most d “defectives,” outputs a superset of the defectives containing less than non-defective items. The primitive has found many applications as stand alone objects and as building blocks in the construction of other combinatorial objects. This paper studies error-tolerant list disjunct matrices which can correct up to e0 false positive and e1 false negative tests in sub-linear time. We then use list-disjunct matrices to prove new results in three different applications. Our major contributions are as follows. (1) We prove several (almost)matching lower and upper bounds for the optimal number of tests, including the fact that Θ(d log(n/d) + e0 + de1) tests is necessary and sufficient when = Θ(d). Similar results are also derived for the disjunct matrix case (i.e. = 1). (2) We present two methods that convert errortolerant list disjunct matrices in a black-box manner into error-tolerant list disjunct matrices that are also efficiently decodable. The methods help us derive a family of (strongly) explicit constructions of list-disjunct matrices which are either optimal or near optimal, and which are also efficiently decodable. (3) We show how to use error-correcting efficiently decodable list-disjunct matrices in three different applications: (i) explicit constructions of d-disjunct matrices with t = O(d log n+rd) tests which are decodable in poly(t) time, where r is the maximum number of test errors. This result is optimal for r = Ω(d log n), and even for r = 0 this result improves upon known results; (ii) (explicit) constructions of (near)optimal, error-correcting, and efficiently decodable monotone encodings; and (iii) (explicit) constructions of (near)-optimal, error-correcting, and efficiently decodable multiple user tracing families.
منابع مشابه
Efficiently Decodable Error-Correcting List Disjunct Matrices and Applications
A (d, `)-list disjunct matrix is a non-adaptive group testing primitive which, given a set of items with at most d “defectives,” outputs a superset of the defectives containing less than ` non-defective items. The primitive has found many applications as stand alone objects and as building blocks in the construction of other combinatorial objects. This paper studies error-tolerant list disjunct...
متن کاملA class of error-correcting pooling designs over complexes
As a generalization of d-disjunct matrices and (w, r;d)-cover-freefamilies, the notion of (s, l)-disjunct matrices is introduced for error-correcting pooling designs over complexes (or set pooling designs). We show that (w, r, d)cover-free-families form a class of (s, l)-disjunct matrices. Moreover, a decoding algorithm for pooling designs based on (s, l)-disjunct matrices is considered.
متن کاملError-correcting nonadaptive group de-disjunct matrices
d-disjunct matrices constitute a basis for nonadaptive group testing (NGT) algorithms and binary d-superimposed codes. The rows of a d-disjunct matrix represent the tests in a NGT algorithm which identifies up to d defects in a population. The columns of a d-disjunct matrix represent binary d-superimposable codewords. A d-disjunct matrix p is called #-disjunct if given any d + 1 columns of p wi...
متن کاملEfficiently Decodable Compressed Sensing by List-Recoverable Codes and Recursion
We present two recursive techniques to construct compressed sensing schemes that can be “decoded" in sub-linear time. The first technique is based on the well studied code composition method called code concatenation where the “outer" code has strong list recoverability properties. This technique uses only one level of recursion and critically uses the power of list recovery. The second recursi...
متن کاملSome Applications of Coding Theory in Computational Complexity
Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011